3.471 \(\int \frac {\text {csch}^2(c+d x) \text {sech}^2(c+d x)}{a+b \sinh (c+d x)} \, dx\)

Optimal. Leaf size=144 \[ \frac {b^2 \text {sech}(c+d x) (a \sinh (c+d x)+b)}{a^2 d \left (a^2+b^2\right )}-\frac {2 b^4 \tanh ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{a^2 d \left (a^2+b^2\right )^{3/2}}-\frac {b \text {sech}(c+d x)}{a^2 d}+\frac {b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac {\tanh (c+d x)}{a d}-\frac {\coth (c+d x)}{a d} \]

[Out]

b*arctanh(cosh(d*x+c))/a^2/d-2*b^4*arctanh((b-a*tanh(1/2*d*x+1/2*c))/(a^2+b^2)^(1/2))/a^2/(a^2+b^2)^(3/2)/d-co
th(d*x+c)/a/d-b*sech(d*x+c)/a^2/d+b^2*sech(d*x+c)*(b+a*sinh(d*x+c))/a^2/(a^2+b^2)/d-tanh(d*x+c)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.379, Rules used = {2898, 2622, 321, 207, 2620, 14, 2696, 12, 2660, 618, 204} \[ -\frac {2 b^4 \tanh ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{a^2 d \left (a^2+b^2\right )^{3/2}}+\frac {b^2 \text {sech}(c+d x) (a \sinh (c+d x)+b)}{a^2 d \left (a^2+b^2\right )}-\frac {b \text {sech}(c+d x)}{a^2 d}+\frac {b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac {\tanh (c+d x)}{a d}-\frac {\coth (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Csch[c + d*x]^2*Sech[c + d*x]^2)/(a + b*Sinh[c + d*x]),x]

[Out]

(b*ArcTanh[Cosh[c + d*x]])/(a^2*d) - (2*b^4*ArcTanh[(b - a*Tanh[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a^2*(a^2 + b^
2)^(3/2)*d) - Coth[c + d*x]/(a*d) - (b*Sech[c + d*x])/(a^2*d) + (b^2*Sech[c + d*x]*(b + a*Sinh[c + d*x]))/(a^2
*(a^2 + b^2)*d) - Tanh[c + d*x]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2620

Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(1 + x^2)^((
m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]

Rule 2622

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2696

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[((g*Co
s[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b - a*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/
(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*(a^2*(p + 2) - b^2*(m + p + 2)
+ a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] &&
IntegersQ[2*m, 2*p]

Rule 2898

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])

Rubi steps

\begin {align*} \int \frac {\text {csch}^2(c+d x) \text {sech}^2(c+d x)}{a+b \sinh (c+d x)} \, dx &=-\int \left (\frac {b \text {csch}(c+d x) \text {sech}^2(c+d x)}{a^2}-\frac {\text {csch}^2(c+d x) \text {sech}^2(c+d x)}{a}-\frac {b^2 \text {sech}^2(c+d x)}{a^2 (a+b \sinh (c+d x))}\right ) \, dx\\ &=\frac {\int \text {csch}^2(c+d x) \text {sech}^2(c+d x) \, dx}{a}-\frac {b \int \text {csch}(c+d x) \text {sech}^2(c+d x) \, dx}{a^2}+\frac {b^2 \int \frac {\text {sech}^2(c+d x)}{a+b \sinh (c+d x)} \, dx}{a^2}\\ &=\frac {b^2 \text {sech}(c+d x) (b+a \sinh (c+d x))}{a^2 \left (a^2+b^2\right ) d}+\frac {b^2 \int \frac {b^2}{a+b \sinh (c+d x)} \, dx}{a^2 \left (a^2+b^2\right )}+\frac {i \operatorname {Subst}\left (\int \frac {1+x^2}{x^2} \, dx,x,i \tanh (c+d x)\right )}{a d}-\frac {b \operatorname {Subst}\left (\int \frac {x^2}{-1+x^2} \, dx,x,\text {sech}(c+d x)\right )}{a^2 d}\\ &=-\frac {b \text {sech}(c+d x)}{a^2 d}+\frac {b^2 \text {sech}(c+d x) (b+a \sinh (c+d x))}{a^2 \left (a^2+b^2\right ) d}+\frac {b^4 \int \frac {1}{a+b \sinh (c+d x)} \, dx}{a^2 \left (a^2+b^2\right )}+\frac {i \operatorname {Subst}\left (\int \left (1+\frac {1}{x^2}\right ) \, dx,x,i \tanh (c+d x)\right )}{a d}-\frac {b \operatorname {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\text {sech}(c+d x)\right )}{a^2 d}\\ &=\frac {b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac {\coth (c+d x)}{a d}-\frac {b \text {sech}(c+d x)}{a^2 d}+\frac {b^2 \text {sech}(c+d x) (b+a \sinh (c+d x))}{a^2 \left (a^2+b^2\right ) d}-\frac {\tanh (c+d x)}{a d}-\frac {\left (2 i b^4\right ) \operatorname {Subst}\left (\int \frac {1}{a-2 i b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{a^2 \left (a^2+b^2\right ) d}\\ &=\frac {b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac {\coth (c+d x)}{a d}-\frac {b \text {sech}(c+d x)}{a^2 d}+\frac {b^2 \text {sech}(c+d x) (b+a \sinh (c+d x))}{a^2 \left (a^2+b^2\right ) d}-\frac {\tanh (c+d x)}{a d}+\frac {\left (4 i b^4\right ) \operatorname {Subst}\left (\int \frac {1}{-4 \left (a^2+b^2\right )-x^2} \, dx,x,-2 i b+2 a \tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{a^2 \left (a^2+b^2\right ) d}\\ &=\frac {b \tanh ^{-1}(\cosh (c+d x))}{a^2 d}-\frac {2 b^4 \tanh ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{a^2 \left (a^2+b^2\right )^{3/2} d}-\frac {\coth (c+d x)}{a d}-\frac {b \text {sech}(c+d x)}{a^2 d}+\frac {b^2 \text {sech}(c+d x) (b+a \sinh (c+d x))}{a^2 \left (a^2+b^2\right ) d}-\frac {\tanh (c+d x)}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.57, size = 135, normalized size = 0.94 \[ -\frac {\frac {2 \text {sech}(c+d x) (a \sinh (c+d x)+b)}{a^2+b^2}+\frac {4 b^4 \tan ^{-1}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2-b^2}}\right )}{a^2 \left (-a^2-b^2\right )^{3/2}}+\frac {2 b \log \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )}{a^2}+\frac {\tanh \left (\frac {1}{2} (c+d x)\right )}{a}+\frac {\coth \left (\frac {1}{2} (c+d x)\right )}{a}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Csch[c + d*x]^2*Sech[c + d*x]^2)/(a + b*Sinh[c + d*x]),x]

[Out]

-1/2*((4*b^4*ArcTan[(b - a*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/(a^2*(-a^2 - b^2)^(3/2)) + Coth[(c + d*x)/2]/
a + (2*b*Log[Tanh[(c + d*x)/2]])/a^2 + (2*Sech[c + d*x]*(b + a*Sinh[c + d*x]))/(a^2 + b^2) + Tanh[(c + d*x)/2]
/a)/d

________________________________________________________________________________________

fricas [B]  time = 0.61, size = 1040, normalized size = 7.22 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*sech(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

-(4*a^5 + 6*a^3*b^2 + 2*a*b^4 + 2*(a^4*b + a^2*b^3)*cosh(d*x + c)^3 + 2*(a^4*b + a^2*b^3)*sinh(d*x + c)^3 + 2*
(a^3*b^2 + a*b^4)*cosh(d*x + c)^2 + 2*(a^3*b^2 + a*b^4 + 3*(a^4*b + a^2*b^3)*cosh(d*x + c))*sinh(d*x + c)^2 -
(b^4*cosh(d*x + c)^4 + 4*b^4*cosh(d*x + c)^3*sinh(d*x + c) + 6*b^4*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b^4*cos
h(d*x + c)*sinh(d*x + c)^3 + b^4*sinh(d*x + c)^4 - b^4)*sqrt(a^2 + b^2)*log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*
x + c)^2 + 2*a*b*cosh(d*x + c) + 2*a^2 + b^2 + 2*(b^2*cosh(d*x + c) + a*b)*sinh(d*x + c) - 2*sqrt(a^2 + b^2)*(
b*cosh(d*x + c) + b*sinh(d*x + c) + a))/(b*cosh(d*x + c)^2 + b*sinh(d*x + c)^2 + 2*a*cosh(d*x + c) + 2*(b*cosh
(d*x + c) + a)*sinh(d*x + c) - b)) - 2*(a^4*b + a^2*b^3)*cosh(d*x + c) + (a^4*b + 2*a^2*b^3 + b^5 - (a^4*b + 2
*a^2*b^3 + b^5)*cosh(d*x + c)^4 - 4*(a^4*b + 2*a^2*b^3 + b^5)*cosh(d*x + c)^3*sinh(d*x + c) - 6*(a^4*b + 2*a^2
*b^3 + b^5)*cosh(d*x + c)^2*sinh(d*x + c)^2 - 4*(a^4*b + 2*a^2*b^3 + b^5)*cosh(d*x + c)*sinh(d*x + c)^3 - (a^4
*b + 2*a^2*b^3 + b^5)*sinh(d*x + c)^4)*log(cosh(d*x + c) + sinh(d*x + c) + 1) - (a^4*b + 2*a^2*b^3 + b^5 - (a^
4*b + 2*a^2*b^3 + b^5)*cosh(d*x + c)^4 - 4*(a^4*b + 2*a^2*b^3 + b^5)*cosh(d*x + c)^3*sinh(d*x + c) - 6*(a^4*b
+ 2*a^2*b^3 + b^5)*cosh(d*x + c)^2*sinh(d*x + c)^2 - 4*(a^4*b + 2*a^2*b^3 + b^5)*cosh(d*x + c)*sinh(d*x + c)^3
 - (a^4*b + 2*a^2*b^3 + b^5)*sinh(d*x + c)^4)*log(cosh(d*x + c) + sinh(d*x + c) - 1) - 2*(a^4*b + a^2*b^3 - 3*
(a^4*b + a^2*b^3)*cosh(d*x + c)^2 - 2*(a^3*b^2 + a*b^4)*cosh(d*x + c))*sinh(d*x + c))/((a^6 + 2*a^4*b^2 + a^2*
b^4)*d*cosh(d*x + c)^4 + 4*(a^6 + 2*a^4*b^2 + a^2*b^4)*d*cosh(d*x + c)^3*sinh(d*x + c) + 6*(a^6 + 2*a^4*b^2 +
a^2*b^4)*d*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*(a^6 + 2*a^4*b^2 + a^2*b^4)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (
a^6 + 2*a^4*b^2 + a^2*b^4)*d*sinh(d*x + c)^4 - (a^6 + 2*a^4*b^2 + a^2*b^4)*d)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 185, normalized size = 1.28 \[ \frac {\frac {b^{4} \log \left (\frac {{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{4} + a^{2} b^{2}\right )} \sqrt {a^{2} + b^{2}}} + \frac {b \log \left (e^{\left (d x + c\right )} + 1\right )}{a^{2}} - \frac {b \log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a^{2}} - \frac {2 \, {\left (a b e^{\left (3 \, d x + 3 \, c\right )} + b^{2} e^{\left (2 \, d x + 2 \, c\right )} - a b e^{\left (d x + c\right )} + 2 \, a^{2} + b^{2}\right )}}{{\left (a^{3} + a b^{2}\right )} {\left (e^{\left (4 \, d x + 4 \, c\right )} - 1\right )}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*sech(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

(b^4*log(abs(2*b*e^(d*x + c) + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^(d*x + c) + 2*a + 2*sqrt(a^2 + b^2)))/((a^4
+ a^2*b^2)*sqrt(a^2 + b^2)) + b*log(e^(d*x + c) + 1)/a^2 - b*log(abs(e^(d*x + c) - 1))/a^2 - 2*(a*b*e^(3*d*x +
 3*c) + b^2*e^(2*d*x + 2*c) - a*b*e^(d*x + c) + 2*a^2 + b^2)/((a^3 + a*b^2)*(e^(4*d*x + 4*c) - 1)))/d

________________________________________________________________________________________

maple [A]  time = 0.00, size = 174, normalized size = 1.21 \[ -\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}+\frac {2 b^{4} \arctanh \left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{d \,a^{2} \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}-\frac {1}{2 d a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {b \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{2}}-\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (a^{2}+b^{2}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {2 b}{d \left (a^{2}+b^{2}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2*sech(d*x+c)^2/(a+b*sinh(d*x+c)),x)

[Out]

-1/2/d/a*tanh(1/2*d*x+1/2*c)+2/d/a^2*b^4/(a^2+b^2)^(3/2)*arctanh(1/2*(2*a*tanh(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(
1/2))-1/2/d/a/tanh(1/2*d*x+1/2*c)-1/d/a^2*b*ln(tanh(1/2*d*x+1/2*c))-2/d/(a^2+b^2)/(tanh(1/2*d*x+1/2*c)^2+1)*a*
tanh(1/2*d*x+1/2*c)-2/d/(a^2+b^2)/(tanh(1/2*d*x+1/2*c)^2+1)*b

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 208, normalized size = 1.44 \[ \frac {b^{4} \log \left (\frac {b e^{\left (-d x - c\right )} - a - \sqrt {a^{2} + b^{2}}}{b e^{\left (-d x - c\right )} - a + \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{4} + a^{2} b^{2}\right )} \sqrt {a^{2} + b^{2}} d} - \frac {2 \, {\left (a b e^{\left (-d x - c\right )} + b^{2} e^{\left (-2 \, d x - 2 \, c\right )} - a b e^{\left (-3 \, d x - 3 \, c\right )} + 2 \, a^{2} + b^{2}\right )}}{{\left (a^{3} + a b^{2} - {\left (a^{3} + a b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} + \frac {b \log \left (e^{\left (-d x - c\right )} + 1\right )}{a^{2} d} - \frac {b \log \left (e^{\left (-d x - c\right )} - 1\right )}{a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*sech(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

b^4*log((b*e^(-d*x - c) - a - sqrt(a^2 + b^2))/(b*e^(-d*x - c) - a + sqrt(a^2 + b^2)))/((a^4 + a^2*b^2)*sqrt(a
^2 + b^2)*d) - 2*(a*b*e^(-d*x - c) + b^2*e^(-2*d*x - 2*c) - a*b*e^(-3*d*x - 3*c) + 2*a^2 + b^2)/((a^3 + a*b^2
- (a^3 + a*b^2)*e^(-4*d*x - 4*c))*d) + b*log(e^(-d*x - c) + 1)/(a^2*d) - b*log(e^(-d*x - c) - 1)/(a^2*d)

________________________________________________________________________________________

mupad [B]  time = 5.23, size = 768, normalized size = 5.33 \[ \frac {b^4\,\ln \left (\frac {64\,b^8\,\sqrt {{\left (a^2+b^2\right )}^3}-96\,a\,b^{10}-384\,a^3\,b^8-512\,a^5\,b^6-288\,a^7\,b^4-64\,a^9\,b^2+288\,a^2\,b^9\,{\mathrm {e}}^{c+d\,x}+960\,a^4\,b^7\,{\mathrm {e}}^{c+d\,x}+1152\,a^6\,b^5\,{\mathrm {e}}^{c+d\,x}+608\,a^8\,b^3\,{\mathrm {e}}^{c+d\,x}+128\,a^{10}\,b\,{\mathrm {e}}^{c+d\,x}-64\,a\,b^7\,{\mathrm {e}}^{c+d\,x}\,\sqrt {{\left (a^2+b^2\right )}^3}+32\,a^3\,b^5\,{\mathrm {e}}^{c+d\,x}\,\sqrt {{\left (a^2+b^2\right )}^3}}{a^3\,{\left ({\left (a^2+b^2\right )}^3\right )}^{3/2}\,\left (a^2+b^2\right )}-\frac {32\,b\,\left (-4\,{\mathrm {e}}^{c+d\,x}\,a^3+2\,a^2\,b-5\,{\mathrm {e}}^{c+d\,x}\,a\,b^2+2\,b^3\right )}{a^3\,{\left (a^2+b^2\right )}^2}\right )\,\sqrt {{\left (a^2+b^2\right )}^3}}{d\,a^8+3\,d\,a^6\,b^2+3\,d\,a^4\,b^4+d\,a^2\,b^6}-\frac {\frac {2\,b^4\,{\mathrm {e}}^{3\,c+3\,d\,x}}{d\,\left (a^2\,b^3+b^5\right )}-\frac {2\,b^4\,{\mathrm {e}}^{c+d\,x}}{d\,\left (a^2\,b^3+b^5\right )}+\frac {2\,b^3\,\left (2\,a^2+b^2\right )}{a\,d\,\left (a^2\,b^3+b^5\right )}+\frac {2\,b^5\,{\mathrm {e}}^{2\,c+2\,d\,x}}{a\,d\,\left (a^2\,b^3+b^5\right )}}{{\mathrm {e}}^{4\,c+4\,d\,x}-1}-\frac {b^4\,\ln \left (\frac {96\,a\,b^{10}+64\,b^8\,\sqrt {{\left (a^2+b^2\right )}^3}+384\,a^3\,b^8+512\,a^5\,b^6+288\,a^7\,b^4+64\,a^9\,b^2-288\,a^2\,b^9\,{\mathrm {e}}^{c+d\,x}-960\,a^4\,b^7\,{\mathrm {e}}^{c+d\,x}-1152\,a^6\,b^5\,{\mathrm {e}}^{c+d\,x}-608\,a^8\,b^3\,{\mathrm {e}}^{c+d\,x}-128\,a^{10}\,b\,{\mathrm {e}}^{c+d\,x}-64\,a\,b^7\,{\mathrm {e}}^{c+d\,x}\,\sqrt {{\left (a^2+b^2\right )}^3}+32\,a^3\,b^5\,{\mathrm {e}}^{c+d\,x}\,\sqrt {{\left (a^2+b^2\right )}^3}}{a^3\,{\left ({\left (a^2+b^2\right )}^3\right )}^{3/2}\,\left (a^2+b^2\right )}-\frac {32\,b\,\left (-4\,{\mathrm {e}}^{c+d\,x}\,a^3+2\,a^2\,b-5\,{\mathrm {e}}^{c+d\,x}\,a\,b^2+2\,b^3\right )}{a^3\,{\left (a^2+b^2\right )}^2}\right )\,\sqrt {{\left (a^2+b^2\right )}^3}}{d\,a^8+3\,d\,a^6\,b^2+3\,d\,a^4\,b^4+d\,a^2\,b^6}-\frac {b\,\ln \left ({\mathrm {e}}^{c+d\,x}-1\right )}{a^2\,d}+\frac {b\,\ln \left ({\mathrm {e}}^{c+d\,x}+1\right )}{a^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^2*sinh(c + d*x)^2*(a + b*sinh(c + d*x))),x)

[Out]

(b^4*log((64*b^8*((a^2 + b^2)^3)^(1/2) - 96*a*b^10 - 384*a^3*b^8 - 512*a^5*b^6 - 288*a^7*b^4 - 64*a^9*b^2 + 28
8*a^2*b^9*exp(c + d*x) + 960*a^4*b^7*exp(c + d*x) + 1152*a^6*b^5*exp(c + d*x) + 608*a^8*b^3*exp(c + d*x) + 128
*a^10*b*exp(c + d*x) - 64*a*b^7*exp(c + d*x)*((a^2 + b^2)^3)^(1/2) + 32*a^3*b^5*exp(c + d*x)*((a^2 + b^2)^3)^(
1/2))/(a^3*((a^2 + b^2)^3)^(3/2)*(a^2 + b^2)) - (32*b*(2*a^2*b - 4*a^3*exp(c + d*x) + 2*b^3 - 5*a*b^2*exp(c +
d*x)))/(a^3*(a^2 + b^2)^2))*((a^2 + b^2)^3)^(1/2))/(a^8*d + a^2*b^6*d + 3*a^4*b^4*d + 3*a^6*b^2*d) - ((2*b^4*e
xp(3*c + 3*d*x))/(d*(b^5 + a^2*b^3)) - (2*b^4*exp(c + d*x))/(d*(b^5 + a^2*b^3)) + (2*b^3*(2*a^2 + b^2))/(a*d*(
b^5 + a^2*b^3)) + (2*b^5*exp(2*c + 2*d*x))/(a*d*(b^5 + a^2*b^3)))/(exp(4*c + 4*d*x) - 1) - (b^4*log((96*a*b^10
 + 64*b^8*((a^2 + b^2)^3)^(1/2) + 384*a^3*b^8 + 512*a^5*b^6 + 288*a^7*b^4 + 64*a^9*b^2 - 288*a^2*b^9*exp(c + d
*x) - 960*a^4*b^7*exp(c + d*x) - 1152*a^6*b^5*exp(c + d*x) - 608*a^8*b^3*exp(c + d*x) - 128*a^10*b*exp(c + d*x
) - 64*a*b^7*exp(c + d*x)*((a^2 + b^2)^3)^(1/2) + 32*a^3*b^5*exp(c + d*x)*((a^2 + b^2)^3)^(1/2))/(a^3*((a^2 +
b^2)^3)^(3/2)*(a^2 + b^2)) - (32*b*(2*a^2*b - 4*a^3*exp(c + d*x) + 2*b^3 - 5*a*b^2*exp(c + d*x)))/(a^3*(a^2 +
b^2)^2))*((a^2 + b^2)^3)^(1/2))/(a^8*d + a^2*b^6*d + 3*a^4*b^4*d + 3*a^6*b^2*d) - (b*log(exp(c + d*x) - 1))/(a
^2*d) + (b*log(exp(c + d*x) + 1))/(a^2*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2*sech(d*x+c)**2/(a+b*sinh(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________